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Fault diagnosis system of wind turbine
gearbox based on GRNN and fault tree

analysis1

Ping Huang2

Abstract. The gearbox fault diagnosis system based on General Regression Neural Network
(GRNN) and fault tree analysis method are studied. We collected the fault information accumulated
during the maintenance procedure of gearbox, drew the fault tree, and put forward the gearbox
diagnosis method that integrates the fault diagnosis expert system based on fault tree diagnosis
and GRNN-based fault diagnosis system. Moreover, we analyzed the vibration signal without
faults, gear wearing and teeth-breaking within time and frequency domains, we extracted five
characteristic parameter as the input of GRNN and train of the network, established the recognition
model of gearbox fault situation based on GRNN, and detected the diagnosis model of GRNN
with the reserved signals. The diagnosis result was in conformity with the practical operation,
so that the research and development of the gearbox fault diagnosis system has been realized
through integrating GRNN model and NET development platform. This fault diagnosis system
can recognize different conditions accurately and effectively, then diagnose them quickly and put
forward expert solutions.
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1. Introduction

Owing to the rapid development of wind turbine industry, fault diagnosis of
wind turbine gearbox has always been addressed by the analysis of maintenance
staff relying on their experience [1, 2]. The time required for this process is long and
the accuracy is low [3]. During the process, the time for addressing the fault accounts
for 70%–90% of the whole process, whereas the time for maintenance accounts for
only 10%–30%.

The structure of wind turbine gearbox is complicated, with many subjects in-
volved, so that it is difficult to conduct fault reasoning. Therefore, to relieve the
burden of operating and maintenance crew, it is quite necessary to improve the ac-

1The author acknowledges the National Natural Science Foundation of China (Grant No.
51578109) and National Natural Science Foundation of China (Grant No. 51121005).

2Guangxi University, Guangxi, 530004, China

http://journal.it.cas.cz



110 PING HUANG

curacy and rapidity of analysis and judgment, as well as to develop a fault diagnosis
system that special to the gearbox. Given this, fault diagnosis expert system can
be applied to the wind turbine gearbox to diagnose the fault in time and propose
reasonable solutions. We also study the experience from other wind turbine enter-
prises and try to apply fault diagnosis expert system to the design of gearbox fault
diagnosis system. We diagnose the fault of gearbox by integrating the fault tree
analysis method with GRNN.

2. Literature review

The fault diagnosis technology of wind turbine gearbox comes from the mechan-
ical fault diagnosis technology, and it will be connected with artificial intelligence
technology more and more closely. The present research on the gearbox fault is
mainly to detect the operation of the rotor of the wind turbine. The diagnosis is
achieved by analysis of the vibration signal spectrum [4]. Howlet et al. [5] proposed
a fault diagnosis system of velocity transducers. The signal processing of this system
adopts the methods of momentum regression for neural networks and multi-signals
processing as well as Fourier variation method. It has been put into use. Moreover,
Amirat et al. [6] summarized the monitoring technologies of wind turbine. Zaher
et al. [7], through comparing the different research data from three countries, keep
the opinion that the most important part of the wind turbine generator system is
the gearbox, and also put forward that the operating condition can be accessed by
the condition monitoring technologies. Moreover, there are some researches at home
that analyze the vibration signals of the main axis and gearbox of wind turbine
with the methods like wavelet transform and frequency spectrum analysis. They
compare the spectrum under normal and abnormal situations, find out the change
of the frequency spectrum and then address the reason and position of the fault [8].
As a result, we try to apply expert system and neural network to the fault diagnosis
of wind turbine gearbox.

3. Research method

3.1. Fault tree analysis

The fault tree analysis is an interpretation method that refines the reasons for
the system fault in dendritic graph progressively [9]. The fault tree analysis method
analyzes the possible factors of system fault, draws the fault tree, and refines the
fault events in a dendritic shape. Thus, it addresses the reasons and the probability
of occurrence, and calculates the importance of each factor leading to system fault
[10–11].

Fault tree model sets the most undesirable event in the system as the top event, all
possible reasons for the top event as intermediate event, and all possible reasons for
the intermediate event as basis event. Logic gate is adopted to show the connection
of different events. A schematic diagram is shown in Fig. 1.
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Fig. 1. Schematic diagram of fault tree

In Fig. 1, the top event is system fault, which was caused by the intermediate
events (faults in module A or B). Meanwhile, fault in module A was caused by
the failure of basis event C1 or C2, while fault in module B was caused by the
simultaneous failure of basis event C3 and C4.

In general, most gearbox faults happened in the gears, bearings, shafts and com-
ponents like cases [12]. Looking at the previous analysis, we can see that the estab-
lishment of fault tree can be classified to the establishing of top event (T), interme-
diate event (M) and basis event (C), as well as the construction of the fault tree.
Construction of the fault tree is one of the core parts of fault tree analysis method.
Fault in any part of the gearbox may lead to the fault in the system, so the logic
relation among different faults refers to the word “or”. The fault tree constructed
can be seen in Fig. 2.

In Fig. 2, the top event T refers to the fault in gearbox, intermediate event M1
refers to gear fault, M2–bearing fault, M3–shaft fault, M4–case fault, M5–fastener
fault, M6–oil seal fault, and basis event C1–fatigue fracture, C2–overload fracture,
· · · , C32–rubber aging. Since there exist various basic events, the rest are omitted
here.

We add corresponding weight and solution to every basis event of the fault tree.
The total weight of all basis events is equal to to 1. Then the expanded fault tree
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Fig. 2. Fault tree diagram of wind turbine gearbox

can not only help to address the positions of and reasons for the faults, but also
figure out the referred solution from the system.

Qualitative analysis of fault tree analysis method aims at searching the minimum
cut-set of fault tree, that is the reason for the fault of top event [13]. There are two
major methods to search the minimum cut-set: ascending method and descending
method [14]. The latter method is adopted this time. The descending method,
starting from the top event, supersedes every event with the lower level event from
top to bottom, records the events in portrait format when encountering with “or”
gate, and records in landscape format when facing “and” gate. The rest can be
done in the same manner until all the logical gates were transformed to basis events.
Thus, all the cut-set of fault tree are addressed [15].

Given the characteristics of the gearbox, all the cut-set in this research are the
minimum cut-sets, denoted as C1, C2, ..., C32. All the minimum cut-sets are inde-
pendent from each other. If there is any fault in a certain one, the top event related
to it will occur, that is, the gearbox will exhibit a fault [16].

The quantitative analysis aims at working out the incidence of the top event
and importance of the basis event, which refers to the influence of the basis event
occurrence on the top event. The analysis on the probability of top event follows.

When the logical gate refers to “or” gate, the occurrence probability of the top
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event is:

p(x) =

n⋃
i=1

p(xi) = 1−
n∏

i=1

[1− p(xi)] . (1)

When the logical gate refers to “and” gate, the occurrence probability of the top
event is:

p(x) =

n⋂
i=1

p(xi) =

n∏
i=1

p(xi) . (2)

In both above formulae, p(x) is the occurrence probability of the top event, p(xi)
is the probability of the minimum cut-set that ranks as the place of i, while n refers
to the total amount of minimum cut-sets. The importance can be expressed as
follows:

Ii(x) =
∂p(x)

∂p(xi)
, (i = 1, 2, · · · , n) . (3)

In this formula, Ii(x) is the probability importance of the basis event which
ranks at the ith position. The higher is the value, the greater is its influence on the
occurrence of the top event.

When users check the gearbox, they can input the obtained fault phenomenon in
the system to search or check them directly. The module of the diagnosis process is
shown in Fig. 3. Obtaining of knowledge refers to a transferring process of accessing
the professional knowledge from the knowledge source, and then transforming them
to the knowledge base. In general, the obtaining methods of knowledge involve
three methods, as artificial obtaining, semi-automatized obtaining, and mechanical
obtaining.

Fig. 3. Diagnosis module

3.2. Fault diagnosis strategy based on GRNN

During the operation of mechanical equipment, their vibration signals vary rapidly,
involving many condition information of their operating. When there is any fault
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in the equipment, the vibration condition changes, and the vibration signals may
include fault information [17–18].

During the process of signals collection, the selection of the measurement point
is very important. The principle of this selection is to get as much vibration signals
and less loss of vibration transferring path as possible. Yet, as to the gearbox, the
measurement point should be placed at the position where damping is low and rigid-
ity is high. The place near the bearing pedestal is good to choose the measurement
point.

Any artificial neural network cannot have recognition ability unless learning to
do it [19]. So some data samples are needed to train the neural network, and these
samples refer to the interpretation on the characteristics of the extracted vibration
signals. We will conduct research from aspects of time domain as well as frequency
domain.

Extracting signal features within time domain is convenient. The statistical in-
dicators of time domain can be classified as unit characteristic values and unitless
characteristic values [20]. A unit characteristic value includes peak value, peak-to-
peak value, mean, variance, etc. A unitless characteristic value includes average
amplitude, waveform index, peak index, impulsion index and so on. However, in
unitless characteristic value, tolerance index, kurtosis index, peak index and im-
pulsion index can indicate the value of impact energy properly, referring to good
evaluation index to diagnose faults. Given this, these four indexes are chosen within
the time domain to carry out a characteristic extraction on vibration signals.

If {xn|n = 1, 2, 3, · · · , N} is used to show a discrete time sequence, then the
unit parameter and the four consequent unitless characteristic values can be shown
in Table 1:

Table 1. Unit and unitless characteristic values

Unit characteristic value Unitless characteristic value

Peak
value

Xmax = |x(n)|max Tolerance
index

CLf =
Xmax
Xr

Average
value

µ = 1
N

∑N
n=1 x(n) Kurtosis

index
Kv = β

σ4

(σ−standard deviation)

Variance σ2 = 1
N−1

∑N
n=1(x(n)− µ)2 Peak in-

dex
Cf = Xmax

D
(usually between 3–6)

Root-
mean-
square
value

D =
√

1
N

∑N
n=1 x

2(n) Impulsion
index

If =
Xmax
µ

Root-
square
magni-
tude

Xr =
[

1
N

∑N
n=1

√
|x(n)|

]2

Kurtosis β = 1
N

∑N
n=1(x(n)− µ)4
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If the gear or bearing is damaged, there will arise impact signals, and the peak
value will increase evidently to 10 or more. Along with the expansion of the fault,
the peak index will decrease gradually, so changes of the peak index can be used as
an early warning for the infancy fault of the gearbox. If the information involved in
time signals belongs to numerous components, the waveform index, impulsion index,
tolerance index and other unitless indexes can be used to conduct fault diagnosis
[21]. The kurtosis index, tolerance index and impulsion index are relatively sensitive
to damages like shock pulse; their values will increase obviously, especially at the
onset of fault. But when increasing to a certain value, they will start to decrease in
turn along with the expansion of fault, which shows that they are highly sensitive
to the early fault but their stability is low.

During the process of signal analysis, the time-domain signal has limitations in
analyzing complex signals. As a result, time-domain signals are often transformed to
those of frequency domain through mathematical methods to obtain more informa-
tion from the signals. As to the distributing characteristics of signals in frequency
domain, information entropy can be adopted as signal signature parameter. We
extract the characteristics of information entropy from the signals within frequency
domain based on power spectrum analysis.

If {xn|n = 1, 2, 3, · · · , N} is used to show the discrete time sequence, the power
spectrum is [22]:

S(w) =
1

2πN
|x(w)|2 . (4)

In this formula, x(w) is the Fourier transform of sequence {xn}. Through dis-
persing the Fourier transform, we can draw the spectrum X(k) and power spectrum
Sk, k = 1, 2, · · · , N . We can derive

N∑
i=1

|x(n)|2 =

N∑
i=1

|S(k)|2 . (5)

The power spectrum entropy Hf can be defined as:

Hf = −
N∑

k=1

pk ln pk , (6)

where pk is the percentage of kth power spectrum to the whole spectrum, and

pk =
Sk∑N
k=1 Sk

.

The power spectrum entropy indicates the spectral structure of vibration signals.
The simpler is the frequency structure of the signals, the lower is the power spectrum
entropy, and also the less is the complexity and uncertainty of the signals. In turn,
the uncertainty will be increasingly high. As a result, the power spectrum entropy
can indicate the distribution complexity of vibration energy on the whole frequency
[23].
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Now, we start building the fault diagnosis module based on GRNN. If the joint
probability density function of random vector x and random variable y is f(x, y),
the regression of y to x can be expressed as [24]

E(y/x) = ŷ(x) =

∫∞
−∞ yf(x, y) dy∫∞
−∞ f(x, y) dy

. (7)

In formula (7), the estimation of f(x, y) can be accessed by estimating the training
data with the application of the Parzen’s nonparametric estimation operator. The
nonparametric estimation is

f̂(x, y) =
1

(2π)
m+1

2 σm+1
· 1
n

n∑
i=1

e−d(x,xi)e−d(y,yi) , (8)

where

d(x, xi) =
(x− xi)T(x− xi)

2σ2
, d(y, yi) =

(y − yi)2

2σ2
.

In this formula, xi is the observation vector of x and yi is the observation value
of y. Symbol m denotes the dimensionality of x, σ is the smoothing factor and n is
the number of samples. Symbol f̂(x, y) is used to replace f(x, y). substituting it to
formula (7), and taking into account that

∫∞
−∞ ze−z

2

dz = 0, we can see that

ŷ(x) =

∑n
i=1 yie

−d(x,xi)∑n
i=1 e

−d(x,xi)
. (9)

The estimated value ŷ(x) is the weighted average of all yi. Each weighted factor
of yi is the index of squared Euclidean distance between sample xi and x. Through
formula (9), we can see that ŷ(x) is within the variation range of yi, which is the
sample observation value of y [25].

Construct now a general regression neural network according to formula (9),
whose structure is expressed in Fig. 4. It includes 4 layers of neurons.

Fig. 4. Structure diagram of GRNN
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From the previous analysis, we select the tolerance index, kurtosis index, peak
index, impulsion index and power spectrum entropy as the input and output param-
eters. The settings are as follows:

Normality: Output Y = (1, 0, 0). Abrasion: Output Y = (0, 1, 0). Gear teeth
breakage: Y = (0, 0, 1).

The fault diagnosis module based on GRNN is depicted in Fig. 5

Fig. 5. Fault diagnosis module based on GRNN

4. Experimental results and discussion

4.1. Test on fault diagnosis model

During the training of neural network, the input information data should be
within range [0, 1], so the input data used in the neural network should be trans-
formed through normalization processing. The corresponding formula is [26]

xio =
xi − xmin

xmax − xmin
. (10)

In this formula, xio is the ith characteristic parameter after normalization pro-
cessing, symbol xi is ith characteristic parameter of the original input data, xmin

is the minimum characteristic parameter, and xmax is the maximum characteristic
parameter.

General regression neural network will conduct the module recognition on the
gearbox with three fault conditions: fault-free, abrasion and gear teeth breakage.
The output mode is y = (a, b, c). The ideal output result is that there is one “1”,
and two “0”s among these three parameters. However, the real outcome is certainly
a little different from the ideal outcome. So we need to judge the simulation result.
We judge it with the threshold condition of 0.9 in this research, in the following way:
if 0.9 ≤ a ≤ 1, it is judged as fault-free, if 0.9 ≤ b ≤ 1, it is judged as abrasion of
gear surface, and if 0.9 ≤ c ≤ 1, it is judged as gear broken. If there is an exception,
the case is not evaluated.

There are 25 groups of data under these signal samples of 3 fault conditions,
among which 10 data groups are fault-free, 10 are abrasion and 5 are gear broken. To
prove the validity of this module, we randomly choose one sample among those three
to detect module, and the rest samples are used as module-building, i.e. network
training. After modulating and observing the diagnosis outcome for many times, we
can see that the training effect is the best when the distributing density is 0.14. The
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results of the training process are summarized in Table 2:

Table 2. Training diagram of general regression neural network

Fault
type

Sample
number

Tolerance
index

Kurtosis
index

Peak
index

Impulsion
index

Power
spectrum
entropy

Fault-free

1 4.5363 2.5926 3.1438 3.8794 3.7556

2 4.8814 2.6627 3.2776 4.1243 3.9353

3 4.2038 2.5822 2.9482 3.6025 3.2745

4 4.2392 2.3255 2.9264 3.6123 3.2972

5 3.4127 1.6478 2.3685 2.9245 3.3713

6 4.7188 2.9606 3.1489 3.9878 3.5716

7 3.8659 2.1607 2.7261 3.3114 3.3946

8 3.7938 1.9976 2.6339 3.2534 3.9537

9 4.6521 2.3712 3.2262 3.9764 3.8014

Gear
abrasion

11 2.5653 1.2408 1.9142 2.2726 2.9810

12 3.6127 1.6156 2.2588 2.9465 3.3054

13 6.0127 2.7246 3.4326 4.7176 3.1076

14 4.5746 2.3827 3.1072 3.8765 3.4056

15 3.7716 1.7365 2.5217 3.1726 3.3845

16 3.1975 1.4945 2.2947 2.7775 3.1727

17 4.1426 2.5217 2.8128 3.5056 3.3903

18 3.9175 1.7203 2.5718 3.2642 3.1054

19 4.1517 2.1987 2.7653 3.4956 3.0656

Gear
broken

21 6.3805 2.9665 3.6652 5.0627 4.3424

22 8.7954 4.7965 6.1554 7.6534 4.9945

23 7.9436 4.1823 5.3335 6.7365 4.3347

24 9.8745 4.9345 6.2114 8.1767 6.3665

To detect the fault diagnosis ability of general regression neural network, the
network that has been trained needs to be tested. The reserved 3 groups of sample
data were used to do module detection. The comparative condition of predicted and
real results is shown in Table 3.

Analyzing the data in Table 3 we can see that the fault diagnosis based on GRNN
has a high recognition rate on three typical fault modes, all of which are above 90%.
It satisfies the threshold conditions set before, and thus, the validity of this module
can be declared as verified.
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Table 3. Detection result of fault diagnosis module based on GRNN

Fault type Normality Abrasion Teeth breakage

Testing
sample

Sample 11 Sample 27 Sample 31

Fault
number

100 010 001

Diagnosis
result

0.9987, 0.0003, 0.0000 0.0012, 0.9994, 0.0000 0.0000, 0.0004, 0.9996

4.2. The design and implementation of fault diagnosis sys-
tem

Based on analysis on the gearbox fault, we developed an expert system of gearbox
fault diagnosis facing with Web. The system is designed in three levels: page for
fault conditions, page for fault reasons and page for solutions. The default page of
the system is the one for fault conditions, see Fig. 6.

Fig. 6. Expert system of gearbox fault diagnosis

We developed this system on .NET platform, integrating C programming lan-
guage. The overall framework of the system is: the left side is the menu of fault
types, the right side is the list for fault conditions. Below the page of fault conditions,
users can search information page by page, and also can input key words in the box
to search what they need. Click the “View detail” in the list of search results, the
possible reasons correspondent to various fault conditions can be achieved. Users
can also click the correspondent menu of fault conditions, and have access to the
list of relative reasons where possible reasons are listed. The list of search result is
ranked according to the weight of reasons, those with the higher weight are ranked
at a higher position on the list to attract the attention of the maintenance staff
immediately.

After having knowledge of fault reasons, users only need to click the “View detail”
on the solutions list to obtain the expert solutions. The maintenance staff can choose



120 PING HUANG

relative fault solutions considering the practical fault condition and concerning their
own knowledge.

5. Conclusion

Gearbox is an important part of the wind turbine generator system, whose fault
will influence the stability and security of the whole wind turbine generator system.
We developed a fault diagnosis system based GRNN and fault tree analysis, and
applied it to the gearbox of wind turbine. The results show that this system can
shorten the time of diagnosing fault, and put forward expert solutions rapidly, thus
the gearbox fault can be diagnosed and maintained accurately and effectively.
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